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Dissipation of mechanical energy plays an important role in many heat transfer processes in 
highly viscous materials. A proper understanding of this phenomenon and its consequences for 
pipe flow might be based on the solution of the heat transfer problem at a simplified assumption 
of fully developed and temperature-independent velocity profile. We present an exact solution 
of this problem obtained by the method of separated variables represented by a series of eigen-
functions simultaneoulsy with an asymptotic similarity solution for the region of low values of z 
where the convergence of the series is slow. 

Increase in the enthalpy of liquid during the pipe flow, which is brought about by 
dissipation, is directly proportional to pressure loss. It depends on the length and 
diameter of the pipe whether this dissipation-induced increase in temperature will be 
considerable. A substantial pressure loss has been often observed even in short pipe 
sections (z <4 0-1) which is usual for e.g. injector and extruder dies used in polymer 
processing, inlet systems of combustion chambers for fuel suspensions and several 
other technological processes working with highly viscous liquids at high pressures. 
In such cases, the dissipative heat evolved usually in a thin layer at the wall cannot 
be distributed, which may lead to increase in the temperature of the layer by as much 
as tens or hundreds o f degrees. 

Heat transfer processes with significant viscous dissipation are usually modelled 
by systems of partial differential equations; at simplifying assumptions, several nume-
rical approximations for high Prandtl numbers may be found in the literature1 _ 4 , 1 3 . 
If we are attempting to find an analytical solution, we must introduce further simpli-
fications. The assumption of a developed temperature profile5, which simplifies axial 
coordinate dependences of the velocity and temperature but which simultaneously 
yields results suitable for long pipes only, may serve as an example of such an approxi-
mation applied to dissipative heat transfer. The case which is dealt with in our work 
is based on the assumption of temperature-independent viscosity, which makes 
it possible to solve momentum and heat transfer equations independently. A solution 
of the temperature field for this case has been given by Toor 6 ; his method has been 
extended to a wide variety of boundary conditions by Petukhov7 . The significance 
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of this problem, which was being overlooked as a rather crude approximation, has 
been injustly underestimated. Its solution gives exact model laws for the idealized 
case of a negligible temperature dependence of viscosity, however, we believe that 
these results may be used as a guide for an extrapolation of separate numerical results 
obtained from the solution of the complete mathematical model. These laws may also 
serve as a useful basis for a formulation of semiempi ical correlations of a larger set 
of results yielded by a rigorous numerical solution8. One of the reasons preventing 
the analytical solution from becoming widespread in the applications was clumsiness 
of its results expressed in the form of a series of eigenfunctions and especially the 
fact that convergence of this series is slow in the region of low values of z, which is 
important in equipments for polymer processing. Due to this fact we present in our 
work besides the complete standard analytical solution also a simple asymptotic 
formula approximating this solution for z -» 0 and we will show the limits of its 
applicability. 

Mathematical Model 

For a steady-state pipe flow of a non-Newtonian fluid obeying the temperature-
-independent power-law model 

the solution of the momentum balance is given by the velocity profile, which may be 
substituted into the equation for heat transfer; this equation assumes then the form of 

T = K(-dvjdRy W 

n + 1 

Usual boundary conditions of the first kind 

STjdR = 0 for R = 0 , 

T = Tw for .x ^ 0 and R — R 

T = T0 for x = 0 , 

m 

(5) 

allow us to write the complete solution as the sum of two terms 

T = T, + T1D , 
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where 7\ is solution Tof Eq. (2) with boundary conditions ( i) —(5) on the assumption 
that K = 0 (without the dissipation term); T1D is solution T of Eq. (2) at boundary 
conditions (5) and 

T = T 0 for jc = 0 , (7) 

T=T0 for R — Rx . (8) 

On introducing dimensionless variables 

r = RjR, , z = xkftecpURl) (9), (10) 

and quantity T 0 with the dimension of temperature: 

r D = 2(3 + l /n) n .KU1+nR\-"lk, (11) 

Eq. (2) may be rewritten into the form 

*L±i (1 _ r.+./") SZ = ^ + i ?L + rDr' + l/n , (12) 
n + 1 5z <9r2 r dr 2n 

where quantities with the dimension of temperature are retained because we have at 
our disposal no quantity with this dimension which would be simultaneously suitable 
for normalization. 

Only separate increments in superposition (6) can be purposefully expressed 
through dimensionless functions. The first increment as given by the effect of boun-
dary conditions is equal to 

Ti(r, z) = T0 + (Tw - T0) (1 - t,(r, z ) ) , (13) 

where t1 is the solution of 

3 n + 1 (1 + = ( / 4 ) 
n + 1 dz dr2 r dr 

with boundary conditions 

t l = 1 for z = 0, (15) 

ti = 0 for z ^ 0 and r = 1 , (16) 

dtl]dr = 0 for r = 0. (17) 
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This solution, already known for the dissipation-free heat t ransfer 9 , 1 0 , may be 
expressed through eigenfunctions Y-, and eigenvalues corresponding to the set 
of equations 

d 2 Yj l d 7 , 
— y + - — + 

dr r d r 
b2 _ r i + i / n jy , = 0 (18) 

1-0 

'1D 

0-5 

1 — 

// 0-2 

/ / 0-1 

J y 0-05 

1-0 0-5 

FIG. I 
Dimensionless Temperature Fields t1 and / 1 D for a Newtonian Fluid (n = 1) 
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FIG. 2 
Dimensionless Temperature Fields and r1 D for a Non-Newtonian Fluid with the Flow Index 
n =0 -5 
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and boundary conditions 

7,(1) = 0 , (19) 

dY-Jdr = 0 for r = 0 . (20) 
It holds 

- r2 + 1,n) dr 
h(r,z)= £ h y.Wexpt-fcfz]. (21) 

1 = 1 Y*(r) (r - r2 + 1,n)dr 

Convergence of this series at high values of z is good. 
We express increment T1D corresponding to the dissipation as 

T\D = TD . (l/2)n/(3n + 1) . f1D (22) 

where the dimensionless function tlv(r, z) is the solution of 

3 w + 1 ( 1 _ + = f ^ l D + l ^ l R + f 3 n + 1 V r l + l / n ^ 

n + 1 dz <3r2 r dr \ n J 

at the conditions 

i1D = 0 for z - 0 , (24) 

t1D = 0 for r = 1 , (25) 

dt1Djdr = 0 for r = 0 . (26) 
This solution can be expressed through eigenfunctions of system (18) —(20) as 

„ f ( l - r3 + 1/n) Y{(r) (r - r2 + 1 / n )dr 
/1D(r, z) = 1 - r3 + 1/n - I ^ exp [ - f e f z ] . 

, = 1 j o Y ? ( r ) ( r - r 2 - / » ) d r ( 2 / ) 

The eigenvalues and eigenfunctions were calculated by the method described in an 
earlier work10. The quadratures were executed also in formulas (21) and (27). The 
temperature field during dissipative heat transfer may be therefore constructed by the 
relation 

T(r, z) = 70 + (Tw - T0) [1 - /,(r, z)] + + 0 • 'id(>% -) , (28) 
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and employing the knowledge of the field of functions tt(r, z) and t1T>(r, z) recorded 
for different values of flow index n on Figs 1 — 3. 

Asymptotic Solution of Functions tx and 11D for Low Values of z 0 

Both series (21) and (27) converge slowly at small z. (For illustration let us note that 
the series of 10 terms is necessary to achieve a 95% accuracy at z = 0-001.) As it is 
obvious from Figs 1 — 3, the heat transfer at small z proceeds only in the immediate 
vicinity of the wall, where some simplifying assumptions may be accepted. On intro-
ducing the dimensionless distance from the wall 

v = 1 - r , (29) 

then at y 0 relation (14) reduces to 

3n + 1 dt, d2t1 —— y — = — 
n oz dy2 (30) 

It is known1 1 that both Eq. (30) and boundary conditions (15) —(17) are satisfied 
by the ordinary differential equation 

d2£ 3 (31) 

Fig. 3 
Dimensionless Temperature Fields ti and for a Non-Newtonian Fluid with the Flow Index 
n = 0-25 
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with the boundary conditions 

f, = 0 for £ = 0 (32) 

r, = 1 for —>• co (33) 

£ - y[(3n + iV(zn)]1 /3 . (34) 

Fig. 4 shows that the solution of Eq. (31) is a good approximation of the solution 
of the complete system (14) —(17) for z < 0-1. 

Eq. (23) at small values y -*• 0 reduces to 

3n + 1 y dU» = + /3n + 1 \2 _ ^ 
n dz dr2 

It can be shown that the solution of the ordinary differential equation 

d£2 3 d£ 

with the boundary conditions 

^ = 0 for f = 0 , (37) 

i// = 0 for £ ^ oo , (38) 

satisfies after substituting (34) and (39) 

f.o = [(3n + 1 ) H 4 / 3 • 

the differential equation (35) and conditions (24) —(26) for z -> 0. It follows from 
Fig. 5, where this solution is compared with the exact solution of complete Eq. (23), 
that the approximate solution reflects the character of profile t1D(y), indicates the 
maximal value of t1D at £ « 1-3 in accordance with the exact solution, but never-
theless it differs in the absolute values. This may be due to approximating the dissi-
pative term by a value at the wall in passing from Eq. (23) to (35) and having in mind 
the solubility of the equation. A certain correction might be achieved if we assume 
that the dissipation is controlled by the velocity gradient in the region of the maximal 
temperature, where >'D « l-3[zn/(3 + 1)]1 / 3 ; then Eq. (35) with the dissipation term 
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multiplied by factor (1 — j D ) 1 + 1 / n has the solution 

1 + l / n , 3n + 1 \ 4 / 3 
* _ J n ^ L \ _ 2 / 3 I1 D — 1 - 1-3 

zn W 
3 n + 1 HO (40) 

which, as it is obvious f rom Fig. 5, approximates the exact solution better for z < 0-1. 
For the heat transfer in a pipe with a constant wall temperature Tw and significant 

dissipation term, the temperature field in the temperature inlet section may be des-
cribed by relation (28) into which asymptotic expressions for tx and f 1 D obtained by 
solving Eqs (30) and (35) have been inserted: 

lim z) = T0 + (Tw - T0) [1 - + (3 + l /» ) 1 / 3 + n . 
z - 0 

_ KU1+nRl~n!kz2'3 (41) 

Based on these relations, an approximate formula with correction (40) can be derived 

T(t z) « T0 + (Tw - T0) [1 - *>(£)] + (3 + l / n ) 1 / 3 + n . KUl +nR\~"lk . 

. z 2 / 3 { 1 - l -3[zn/(3» + l ) ] i /3}i + i/n ^ ? 

which is valid within the accuracy of technical calculations for z < 0-1. 

Because funct ions ift(£) and 1 — are approximately of the same order, the 
criterion may be introduced 

nD0 = Br(3 + l /n ) 1 / 3 + " z 2 / 3 , (43) 

FIG. 4 

Comparison of the Asymptotic Solution of Function 
t t for z—> 0 (curve 1) with Actual Courses of the 
Function for Finite Values of z: 2 for z — 0 01 and 
n — 1, 3 for z = 01 and n = 1, 4 for z = 01 and 
n = 0-333, 5 for z = 0-5 and n = 1, 6 for 2 = 0-5 
and n = 0-5 
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where 
Br = KU1+nR\~nl(k |TW - T0\) (44) 

is the Brinkmann number defined in the usual manner. The significance of the effect 
of dissipation on the temperature field for z < 0-1 is then given by criterion 7TD0. 

FIG. 5 

Comparison of the Asymptotic Solution of Function t1V) for 0 (Curve 1) with Actual Courses 
of the Function at Finite Values of z: Curve 2 for z = 0 01 and n — 1, 3 for z = 0 01 and 
n = 0-5, 4 for z = 0 01 and n = 0.25, 5 for z = 0 1 and n = 1, 6 for z = 0 1 and n = 0-25 

Dashed are approximations employing the corrected formula (40) and corresponding to cases 
2 - 6 . 

It is seen on Fig. 3 that functions (1 — tt) and t1D are approximately of the same 
order for z > 0-1, so that the criterion of significance of dissipation in this region 
following f rom Eq. (28) is given by 

i7Da3 = Br(3 + 1 In)"'1 , (45) 

which is a modification of the Brinkman number suitable for non-Newtonian fluids. 

C O N C L U S I O N S 

1) A solution of the partial differential equation for heat transfer during the inlet 
of a power-law fluid with a temperature-independent consistency and tempera-
ture T0 into a pipe with the wall temperature Tw and under the influence of dissi-
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pation was formulated in expression (28), which separates the effects of boundary 
conditions and dissipation. Courses of functions f t ( r , z) and t1D(r, z) appearing in 
this formula are illustrated on Figs 1 — 3. For low values of z < 0-1, the corrected 
asymptotic formula (42) with functions ti(£) and depicted on Figs 4 and 5 may 
be recommended. 

2) The effect of more complicated boundary conditions imposed e.g. by a variable 
temperature of the entering liquid or by the axially-dependent wall temperature, 
will be reflected in expression (28) only through function tx(r, z). Starting from the 
knowledge of the fundamental solution given by expression (21), this function can be 
evaluated by the superposition principle12 ,13 without necessarily solving the diffe-
rential equations once again. 

3) The effect of the dissipation on heat transfer was evaluated and it may be stated 
that this effect is measured at z < 0-1 by criterion IJD0 or by criterion i7Doo at z > 0-1. 
Quantitatively it can be stated that the dissipation plays the major role while tempera-
ture changes at the wall are of minor importance 

/ \ ( 3 n + l ) / 2 

at z < 0-1 and z p - /Br3 / 2 

\3n + 1/ 

and at z > 0-1 and Br(3 + l / n ) n _ 1 > 1 . 

The contribution to the temperature field due to the dissipation is unimportant 

/ \ ( 3 n + l ) / 2 
at z < 0-1 and z <§ ( /Br3 / 2 (48) 

\3n + 1J 

and at z > 0-1 and Br(3 + l / n ) n _ 1 « 1 . (49) 

It may be assumed that at conditions (48) or (49), findings on the dissipation-free 
heat transfer can be applied even to systems for which the heat transfer equation de-
viates from Eq. (2) — e.g. for other rheological models or for a flow with a tempera-
ture-dependent viscosity; it is only the matter of suitable definitions of characteristic 
values K and n. 

(46) 

(47) 

LIST OF SYMBOLS 

bf eigenvalues of system {18) —(20) 
c p specific heat 
Br Br inkman number (44) 
k thermal conductivity 
K consistency coefficient (J) 
n flow index ( I ) 
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R radial coordinate 
Ry radius of the pipe 
r dimensionless radial coordinate (9) 
T temperature 
r D characteristic dissipation temperature (77) 
Tl solution of the heat transfer equation without dissipation 
r 1 D solution of the heat transfer equation without the temperature step on the wall 
TQ temperature of the entering liquid 
Tw wall temperature 
tx dimensionless temperature (75) 
/*D dimensionless temperature (22) 
tid approximate solution of function / 1 D (40) 
U mean velocity 
x axial coordinate 
Fj eigenfunction of system (18)—(20) 
y dimensionless distance from the wall (29) 
i dimensionless axial coordinate (10) 
g dimensionless variable (34) 
77d0 criterion of the effect of dissipation at z—.-> 0 (43) 
77Doo criterion of the effect of dissipation at z—> co (45) 
q density 

i// dimensionless function (39) 
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